Novel poly(2-oxazoline) block copolymer with aromatic heterocyclic side chains as a drug delivery platform

J Control Release. 2019 Aug 10:307:261-271. doi: 10.1016/j.jconrel.2019.06.037. Epub 2019 Jun 28.

Abstract

Here we report a novel poly(2-oxazoline)-based block copolymer with the aromatic heterocyclic side chains in one block, poly(2-methyl-2-oxazoline)-b-poly(2-N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl-2-oxazoline) (PMeOx-PcBOx), and demonstrate its potential application as a drug delivery platform. The copolymer was synthesized via the condensation of N,N-dimethylbiguanide with the methyl ester side chain in poly(2-methoxycarboxyethyl-2-oxazoline) block (PMestOx) of the PMeOx-PMestOx diblock copolymer. We confirmed the N,N-dimethylbiguanide condensation with PMestOx and the complete conversion of the side chain to the N,N-dimethyl-1,3,5-triazine-2,4-diamine-6-ethyl moiety by NMR spectroscopy, MALDI-TOF mass spectroscopy, UV-Vis spectroscopy, and titration analysis. The PMeOx-PcBOx copolymer self-assemble into polymeric micelles in aqueous solution. Successful encapsulation into these micelles has been demonstrated for 1) several poorly soluble drugs, such as bruceantin and LY2109761, and 2) dichloro(1,2-diaminocyclohexane)platinum(II) (DachPt). The first class of drugs is incorporated possibly via hydrogen bonding and pi-pi interactions with the PcBOx side groups, while the second one is likely forms coordination bonds with the same side groups. The capability of this new copolymer to solubilize a uniquely diverse set of active pharmaceutical ingredients suggests potential applications in drug delivery.

Keywords: Biguanide; Condensation; Coordination; Hydrogen bonding; Poly(2-oxaozoline); Polymeric micelles; Solubilization.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / chemistry
  • Cell Line, Tumor
  • Drug Delivery Systems*
  • Drug Liberation
  • Humans
  • Mice
  • Micelles
  • Oxazoles / administration & dosage*
  • Oxazoles / chemistry
  • Polymers / administration & dosage*
  • Polymers / chemistry

Substances

  • Antineoplastic Agents
  • Micelles
  • Oxazoles
  • Polymers