The oral breakdown, sensory properties, and volatile release during mastication of white bread were investigated. The results of correlation analysis for white bread's physical properties and it's oral physiological parameters during chewing have elucidated that bread's physical properties determined the oral processing behavior. During chewing of white bread, 15 dominant ions with regularly changing patterns were monitored by proton transfer reaction-mass spectrometry (PTR-MS). These dominant ions derived from 32 volatile compounds were further confirmed by pure standards. Partial least squares regression (PLSR) analysis was used to explore the positive correlations between the sensory analysis and the dominant aroma compounds. Results have shown that 9 aroma compounds were predicted as the potent odorants contributing to the changes in aroma profiles. Finally, 3-hydroxy-2-butanone, 2-methyl-1-propanol, and heptanoic acid were confirmed as the key aroma compounds contributing to the changes in aroma profiles of white bread before and after chewing.
Keywords: Oral processing; Partial least squares regression; Proton transfer reaction-mass spectrometry; Quantitative descriptive analysis; Solid-phase microextraction; White bread.
Copyright © 2019 Elsevier Ltd. All rights reserved.