Interferon (IFN), the first ever-described cytokine, has a potent activity against viruses. Soon since its discovery, quantification of IFN has been an important issue. Most of the traditional methods to measure IFN biological activity rely on indirect methods that quantify dyes retained by IFN-protected cells against a lytic virus, or by techniques that indirectly quantify viral replication by measuring the expression level of viral-encoded reporter proteins such as the green fluorescent protein (GFP). In both cases, the IFN units are determined by the quantification of an effective dose 50, defined as the IFN dose that prevents 50% cell death of 50% reduction of the maximal amount of GFP intensity. In this study we propose the use of an alternative approach to measure IFN activity by calculating the minimal IFN dose 50 as the amount of IFN able to completely protect 50% of the cells from infection measured by the total absence of virus-dependent GFP signal in a cell culture plate. This sensitive approach could be used to easily quantify the Z value to determine IFN bioassay robustness. We believe that this approximation could be interesting to be considered by the IFN community.
Keywords: IFN bioassay; Z value; minimal interferon dose 50.