Background: Tenofovir-containing regimens comprise the preferred first-line antiretroviral therapy (ART) in many countries including South Africa, where utilization of second-line regimens is limited. Considerable HIV drug resistance has occurred among persons failing tenofovir-containing first-line ART. We evaluated drug resistance at the population level using mathematical modeling.
Setting: Heterosexual HIV epidemic in KwaZulu-Natal, South Africa.
Methods: We constructed a stochastic individual-based model and simulated scenarios of ART implementation, either CD4-based (threshold < 500 cells/mL) or Fast-track (81% coverage by 2020), with consideration of major drug-associated mutations (M184V, K65R and non-nucleoside reverse transcriptase inhibitor (NNRTI)). Using base case and uncertainty analyses, we assessed (majority) drug resistance levels.
Results: By 2030, the median total resistance (proportion of HIV-infected persons with drug resistance) is predicted to reach 31.4% (interquartile range (IQR): 16.5%-50.2%) with CD4-based ART, decreasing to 14.5% (IQR: 7.7%-25.8%) with Fast-track implementation. In both scenarios, we find comparably high prevalence (~80%) of acquired NNRTI-associated, M184V and K65R mutations. Over 48% of individuals with acquired resistance harbor dual, 44% triple and 7% just single drug mutations. Drug-resistant HIV is predicted to comprise 40% (IQR: 27%-50%) of incident infections, while 70% of prevalent transmitted resistance is NNRTI-associated. At 2018, the projected total resistance is 15% (IQR: 7.5%-25%), with 18% (IQR: 13%-24%) of incident infections from transmitted drug-resistant HIV.
Conclusions: WHO-recommended preferred first-line ART could lead to substantial drug resistance. Effective surveillance of HIV drug resistance and utilization of second-line as well as alternative first-line regimens is crucial.