Melatonin-Mediated Pak2 Activation Reduces Cardiomyocyte Death Through Suppressing Hypoxia Reoxygenation Injury-Induced Endoplasmic Reticulum Stress

J Cardiovasc Pharmacol. 2019 Jul;74(1):20-29. doi: 10.1097/FJC.0000000000000678.

Abstract

Cardiac reperfusion injury has been found to be associated with endoplasmic reticulum (ER) stress. Recently, p21-activated kinase 2 (Pak2) has been identified as a primary mediator of ER stress in chronic myocardial injury. Melatonin, a biological clock-related hormone, has been demonstrated to attenuate heart reperfusion burden by modulating ER stress and mitochondrial function. The aim of our study was to explore whether reperfusion-induced ER stress is modulated by melatonin through Pak2. Hypoxia reoxygenation (HR) was used in vitro to mimic reperfusion injury in cardiomyocytes. ER stress, oxidative stress, calcium overload, and cell death were measured through Western blotting, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and immunofluorescence with the assistance of siRNA transfection and pathway blocker treatment. The results of our study demonstrated that HR decreased the levels of Pak2 in cardiomyocytes in vitro, and inactivation of Pak2 was associated with ER stress, oxidative stress, calcium overload, caspase-12 activation, and cardiomyocytes apoptosis in vitro. Interestingly, melatonin treatment attenuated HR-mediated ER stress, redox imbalance, calcium overload, and caspase-12-related cardiomyocytes apoptosis, and these protective effects were dependent on Pak2 upregulation. Knockdown of Pak2 abolished the beneficial actions exerted by melatonin on HR-treated cardiomyocytes in vitro. Finally, we found that melatonin reversed Pak2 expression by activating the AMPK pathway and blockade of the AMPK pathway suppressed Pak2 upregulation and cardiomyocytes survival induced by melatonin in the presence of HR stress. Overall, our study reports that the AMPK-Pak2 axis, a novel signaling pathway modulated by melatonin, sends prosurvival signals for cardiomyocytes reperfusion injury through attenuation of ER stress in vitro.

MeSH terms

  • AMP-Activated Protein Kinases / metabolism
  • Animals
  • Apoptosis / drug effects*
  • Calcium Signaling / drug effects
  • Cell Hypoxia
  • Cells, Cultured
  • Endoplasmic Reticulum Stress / drug effects*
  • Enzyme Activation
  • Melatonin / pharmacology*
  • Mice
  • Myocardial Reperfusion Injury / enzymology
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / prevention & control*
  • Myocytes, Cardiac / drug effects*
  • Myocytes, Cardiac / enzymology
  • Myocytes, Cardiac / pathology
  • Oxidative Stress / drug effects
  • p21-Activated Kinases / genetics
  • p21-Activated Kinases / metabolism*

Substances

  • Pak2 protein, mouse
  • p21-Activated Kinases
  • AMP-Activated Protein Kinases
  • Melatonin