Klebsiella pneumoniae-induced liver abscess (KLA) is emerging as a leading cause of pyogenic liver abscess worldwide. In recent years, the emergence of hypervirulent K. pneumoniae (hvKp) has been strongly associated with KLA. Unlike classical K. pneumoniae, which generally infects the immunocompromised population, hvKp can cause serious and invasive infections in young and healthy individuals. hvKp isolates are often associated with the K1/K2 capsular types and possess hypermucoviscous capsules. KLA is believed to be caused by K. pneumoniae colonizing the gastrointestinal tract of the host and translocating across the intestinal barrier via the hepatic portal vein into the liver to cause liver abscess. We optimized the isolation of the liver-resident macrophages called Kupffer cells in mice and examined their importance in controlling bacterial loads during hvKp infection in healthy mice. Our study reveals the high capability of Kupffer cells to kill hvKp in vitro despite the presence of the bacterial hypermucoviscous capsule, in contrast to other macrophages, which were unable to phagocytose the bacteria efficiently. Depletion of Kupffer cells and macrophages with liposome-encapsulated clodronate (liposomal clodronate) in both an intraperitoneal and an oral mouse infection model resulted in increased bacterial loads in the livers, spleens, and lungs and increased mortality of the infected mice. Thus, Kupffer cells and macrophages are critical for the control of hvKp infection.
Keywords: Klebsiella pneumoniae; Kupffer cells; hypervirulent; liver abscess; macrophages.
Copyright © 2019 American Society for Microbiology.