CRISPR-Cas9 system: A new-fangled dawn in gene editing

Life Sci. 2019 Sep 1:232:116636. doi: 10.1016/j.lfs.2019.116636. Epub 2019 Jul 8.

Abstract

Till date, only three techniques namely Zinc Finger Nuclease (ZFN), Transcription-Activator Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9) are available for targeted genome editing. CRISPR-Cas system is very efficient, fast, easy and cheap technique for achieving knock-out gene in the cell. CRISPR-Cas9 system refurbishes the targeted genome editing approach into a more expedient and competent way, thus facilitating proficient genome editing through embattled double-strand breaks in approximately any organism and cell type. The off-target effects of CRISPR Cas system has been circumnavigated by using paired nickases. Moreover, CRISPR-Cas9 has been used effectively for numerous purposes, like knock-out of a gene, regulation of endogenous gene expression, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The execution of the CRISPR-Cas9 system has amplified the number of accessible scientific substitutes for studying gene function, thus enabling generation of CRISPR-based disease models. Even though many mechanistic questions are left behind to be answered and the system is not yet fool-proof i.e., a number of challenges are yet to be addressed, the employment of CRISPR-Cas9-based genome engineering technologies will increase our understanding to disease processes and their treatment in the near future. In this review we have discussed the history of CRISPR-Cas9, its mechanism for genome editing and its application in animal, plant and protozoan parasites. Additionally, the pros and cons of CRISPR-Cas9 and its potential in therapeutic application have also been detailed here.

Keywords: CRISPR-Cas9; Genome editing; Knock in; Knock out.

Publication types

  • Review

MeSH terms

  • Animals
  • CRISPR-Cas Systems*
  • Clustered Regularly Interspaced Short Palindromic Repeats
  • Gene Editing / methods*
  • Gene Editing / trends
  • Genome
  • Humans
  • Plants / genetics