The LFER 150 PET/CT device (large-field-of-view extreme-resolution portable research imager) is a system for nonhuman primate (NHP) imaging. The objective of this study was to evaluate the performance of the system using the National Electrical Manufacturers Association NU 4-2008 standard protocol. As a preliminary in vivo evaluation of the system, a PET measurement in an NHP was also performed. Methods: Resolution, sensitivity, image quality, and noise-equivalent count rate (NECR) were measured. NECR measurement was performed with a ratlike phantom and a monkeylike phantom. A Derenzo phantom experiment was performed to test the resolution using 3-dimensional ordered-subset expectation maximization reconstruction. One cynomolgus monkey (4.5 kg, intravenous ketamine/xylazine anesthesia) was examined with the dopamine transporter radioligand 18F-FE-PE2I (94 MBq) to evaluate the in vivo performance of the system. List-mode PET data acquired for 93 min were reconstructed into 38 frames with the Tera-Tomo 3-dimensional engine. Binding potential for caudate nucleus, putamen, and substantia nigra was evaluated using the simplified reference tissue model. Results: Radial full-width half-maximum resolution using Fourier rebinning and a 2-dimensional filtered backprojection algorithm was less than 2.2 mm and less than 3.2 mm in the central 60-mm-diameter and 140-mm-diameter regions, respectively. Maximum sensitivity in the 400- to 600-keV and 250- to 750-keV energy windows was 30.03 cps/kBq (3.3%) and 49.11 cps/kBq (5.4%), respectively. The uniformity in the image-quality phantom was 3.3%, and the spillover ratio for air and water was 0.1. The peak of the NECR curve was 430 kcps (at 115 MBq) with the ratlike phantom and 78 kcps (at 139 MBq) with the monkeylike phantom. Rods of the Derenzo phantom with 1-mm diameter could be distinguished by eye. In the NHP experiment, binding potentials in the caudate, putamen, and substantia nigra (4.9, 4.9, and 1, respectively) were similar to those previously reported using the same radioligand and a high-resolution research tomograph. Conclusion: The results obtained from phantom experiments and 1 representative PET measurement in an NHP confirm that the LFER 150 is a high-resolution PET/CT system with suitable performance for brain imaging in NHPs.
Keywords: NHP imaging; PET/CT imaging; multimodality imaging; performance evaluation; preclinical PET.
© 2019 by the Society of Nuclear Medicine and Molecular Imaging.