Bordetella bronchiseptica is an etiologic agent of respiratory diseases in animals and humans. Despite the widespread use of veterinary B. bronchiseptica vaccines, there is limited information on their composition and relative efficacy and on the immune responses that they elicit. Furthermore, human B. bronchiseptica vaccines are not available. We leveraged the dual antigenic and adjuvant functions of Bordetella colonization factor A (BcfA) to develop acellular B. bronchiseptica vaccines in the absence of an additional adjuvant. BALB/c mice immunized with BcfA alone or a trivalent vaccine containing BcfA and the Bordetella antigens FHA and Prn were equally protected against challenge with a prototype B. bronchiseptica strain. The trivalent vaccine protected mice significantly better than the canine vaccine Bronchicine and provided protection against a B. bronchiseptica strain isolated from a dog with kennel cough. Th1/17-polarized immune responses correlate with long-lasting protection against bordetellae and other respiratory pathogens. Notably, BcfA strongly attenuated the Th2 responses elicited by FHA and Prn, resulting in Th1/17-skewed responses in inherently Th2-skewed BALB/c mice. Thus, BcfA functions as both an antigen and an adjuvant, providing protection as a single-component vaccine. BcfA-adjuvanted vaccines may improve the efficacy and durability of vaccines against bordetellae and other pathogens.
Keywords: BcfA; Bordetella; adjuvant; antigen; vaccines.
Copyright © 2019 American Society for Microbiology.