Linking forest management to moose population trends: The role of the nutritional landscape

PLoS One. 2019 Jul 16;14(7):e0219128. doi: 10.1371/journal.pone.0219128. eCollection 2019.

Abstract

Forested lands in the western USA have undergone changes in management and condition that are resulting in a shift towards climax vegetation. These changes can influence the quality and quantity of forage for herbivores that rely on early-seral plants. To evaluate how management of forested landscapes might affect nutrition for Shiras moose (A. a. shirasi) at large spatial scales, we focused on shrubs and evaluated summer diet composition, forage availability, and forage quality across 21 population management units encompassing >36,000 km2 in northern Idaho, USA. We identified 17 shrub species in the diets of moose, 11 of which comprised the bulk of the diets. These forage shrubs varied markedly in both energy (mean digestible energy for leaves ranged from 9.62 to 12.89 kJ/g) and protein (mean digestible protein for leaves ranged from 1.73 to 7.90%). By adapting established field sampling methods and integrating recent advances in remote sensing analyses in a modeling framework, we predicted approximations of current and past (i.e., 1984) quantities of forage shrubs across northern Idaho. We also created a qualitative index of population trend for moose across population management units using harvest data. Predicted quantities of forage shrubs varied widely across the study area with generally higher values at more northern latitudes. The quantity of forage shrubs was estimated to have declined over the past 30 years in about half of the population management units, with the greatest declines predicted for high-energy forage species. The population trend index was correlated with the percent change in availability of moderate-energy forage shrubs, indicating that availability of forage shrubs and change in availability over time might be affecting population dynamics for moose in northern Idaho. Our study highlights the importance of assessing how changes in forest management across broad spatiotemporal extents could affect wildlife and their habitats.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Nutritional Physiological Phenomena
  • Animals
  • Conservation of Natural Resources / methods
  • Conservation of Natural Resources / trends
  • Deer / physiology*
  • Diet*
  • Ecosystem
  • Female
  • Forests*
  • Herbivory
  • Idaho
  • Male
  • Plants, Edible
  • Population Dynamics / trends
  • Seasons
  • Spatio-Temporal Analysis

Associated data

  • Dryad/10.5061/dryad.2k86k38

Grants and funding

Financial support was provided by the Idaho Department of Fish and Game (#1434-11HQRV1579), Federal Aid in Wildlife Restoration Funds, and the University of Idaho (JLR). Employees of Idaho Department of Fish and Game (TVS and MAH) participated in study design, data collection, data analysis, and manuscript preparation.