Oxaspirolactones are ubiquitous structural motifs found in natural products and synthetic molecules with a diverse biochemical and physicochemical profile, and represent a valuable target in natural product chemistry and medicinal chemistry. Since the 1970s, numerous innovative synthetic methodologies have been reported for these scaffolds in the context of expanding the range of potential building blocks, catalysts, and modes of transformations (racemic or asymmetric protocols). This review focuses on a broad spectrum of approaches toward the synthesis of oxaspirolactones and their potential application in the total synthesis of biologically relevant natural products starting from the first disclosure to the latest report.