Mapping potential, existing and efficient wetlands using free remote sensing data

J Environ Manage. 2019 Oct 1:247:829-839. doi: 10.1016/j.jenvman.2019.06.098. Epub 2019 Jul 20.

Abstract

Although wetlands remain threatened by human pressures and climate change, monitoring and managing them are challenging due to their high spatial and temporal dynamics within a fine-grained pattern. New satellite time-series at high temporal and spatial resolutions provide a promising opportunity to map and monitor wetlands. The objective of this study was to develop an operational method for managing valley bottom wetlands based on available free remote sensing data. The Potential, Existing, Efficient Wetlands (PEEW) approach was adapted to remote sensing data to delineate three wetland components: (1) potential wetlands, mapped from a digital terrain model derived from LiDAR data; (2) existing wetlands, delineated from land cover maps derived from Sentinel-1/2 time-series; and (3) efficient wetlands, identified from functional indicators (i.e. annual primary production, vegetation phenology, seasonality of carbon flux) derived from MODIS annual time-series. Soil and vegetation samples were collected in the field to calibrate and validate classification of remote sensing data. The method was applied to a 113 000 ha watershed in northwestern France. Results show that potential wetlands were successfully delineated (82% overall accuracy) and covered 21% of the watershed area, while 44% of existing wetlands had been lost. Small wetlands along headwater channels, which are considered as ordinary, cover 56% of wetland area in the watershed. Efficient wetlands were identified as contiguous pixels with a similar temporal functional trajectory. This method, based on free remote sensing data, provides a new perspective for wetland management. The method can identify sites where restoration measures should be prioritized and enables better understanding and monitoring of the influence of management practices and climate on wetland functions.

Keywords: Lidar; MODIS; Natural vegetations; Random forest; Sentinel; Wetland functions.

MeSH terms

  • Climate Change
  • Environmental Monitoring
  • France
  • Humans
  • Remote Sensing Technology*
  • Soil
  • Wetlands*

Substances

  • Soil