Circannual rhythmicity in thyroid-stimulating hormone (TSH) secretion is proposed, whereas evidences on seasonal peripheral thyroid hormones' fluctuation are contradictory. This study was designed to evaluate hypothalamic-pituitary-thyroid (HPT) seasonal secretion pattern using a big data approach. An observational, retrospective, big data trial was carried out, including all TSH measurements performed in a single laboratory between January 2010 and December 2017. A large dataset was created matching TSH data with patients' age, gender, environmental temperature exposure, and free triiodothyronine (fT3) and free thyroxine (fT4) when available. The trend and seasonal distributions were analysed using autoregressive integrated moving average models. A total of 1,506,495 data were included in the final database with patients mean age of 59.00 ± 18.44 years. The mean TSH serum levels were 2.08 ± 1.57 microIU/mL, showing a seasonal distribution with higher levels in summer and winter seasons, independently from age, gender and environmental temperatures. Neither fT3 nor fT4 showed a seasonal trend. TSH seasonal changes occurred independently from peripheral thyroid hormone variations, gender, age and environmental temperatures. Although seasonal TSH fluctuation could represent a residual ancestral mechanism to maintain HPT homeostasis, the underlying physiological mechanism remains unclear and specific studies are needed to clarify its impacting role in humans.