The combination of photo-switchable units with macrocycles is a very interesting field in supramolecular chemistry. Here, we present the synthesis of a foldable container consisting of two different types of Lissoclinum macrocyclic peptides which are connected via two azobenzene units. The container is controllable by light: irradiation with UV light causes a switching process to the compact cis,cis-isomer, whereas by the use of visible light the stretched trans,trans-isomer is formed. By means of quantum chemical calculations and CD spectroscopy we could show that the trans→cis isomerization is spatially directed; that means that one of the two different macrocycles performs a definite clockwise rotation to the other, caused by irradiation with UV light. For the cis→trans isomerization counterclockwise rotations are found. Furthermore, quantum chemical calculations reveal that the energy of the cis,cis-isomer is only slightly higher than the energy of the cis,trans-isomer. This effect can be explained by the high dispersion energy in the compact cis,cis-isomer.
Keywords: azobenzene; macrocycles; molecular switch.