Disrupted brain functional networks in drug-naïve children with attention deficit hyperactivity disorder assessed using graph theory analysis

Hum Brain Mapp. 2019 Dec 1;40(17):4877-4887. doi: 10.1002/hbm.24743. Epub 2019 Jul 30.

Abstract

Neuroimaging studies have revealed functional brain network abnormalities in attention deficit hyperactivity disorder (ADHD), but the results have been inconsistent, potentially related to confounding medication effects. Furthermore, specific topological alterations in functional networks and their role in behavioral inhibition dysfunction remain to be established. Resting-state functional magnetic resonance imaging was performed on 51 drug-naïve children with ADHD and 55 age-matched healthy controls. Brain functional networks were constructed by thresholding the partial correlation matrices of 90 brain regions, and graph theory was used to analyze network topological properties. The Stroop test was used to assess cognitive inhibitory abilities. Nonparametric permutation tests were used to compare the topological architectures in the two groups. Compared with healthy subjects, brain networks in ADHD patients demonstrated altered topological characteristics, including lower global (FDR q = 0.01) and local efficiency (p = 0.032, uncorrected) and a longer path length (FDR q = 0.01). Lower nodal efficiencies were found in the left inferior frontal gyrus and anterior cingulate cortex in the ADHD group (FDR both q < 0.05). Altered global and nodal topological efficiencies were associated with the severity of inhibitory cognitive control deficits and hyperactivity symptoms in ADHD (p <0 .05). Alterations in network topologies in drug-naïve ADHD patients indicate weaker small-worldization with decreased segregation and integration of functional brain networks. Deficits in the cingulo-fronto-parietal attention network were associated with inhibitory control deficits.

Keywords: ADHD; brain functional networks; graph theory analysis; inhibitory cognitive control deficits; psychoradiology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Attention Deficit Disorder with Hyperactivity / diagnostic imaging*
  • Brain / diagnostic imaging*
  • Brain Mapping
  • Child
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Nerve Net / diagnostic imaging*
  • Neural Pathways / diagnostic imaging