The behavior of the structural parameters of DNA considering different levels of methylation in CpG islands is studied by means of full-atom molecular dynamics simulations and electronic circular dichroism, both in an artificial model system and in a gene promoter sequence. It is demonstrated that methylation although intrinsically brings quite local perturbations may, if its level is high enough, induce cooperative effects that strongly modify the DNA backbone torsional parameters altering the helicity as compared to the nonmethylated case. Because methylation of the CpG island is correlated with the regulation of gene expression, understanding the structural modifications induced in DNA is crucial to characterize all the fine equilibria into play in epigenetics phenomena.