Background: The use of antenatal corticosteroids (ACS) in low-resource environments is sporadic. Further, drug choice, dose, and route of ACS are not optimized. We report the pharmacokinetics and pharmacodynamics of oral dosing of ACS using a preterm sheep model.
Methods: We measured pharmacokinetics of oral betamethasone-phosphate (Beta-P) and dexamethasone-phosphate (Dex-P) using catheterized pregnant sheep. We compared fetal lung maturation responses of oral Beta-P and Dex-P to the standard treatment with 2 doses of the i.m. mixture of Beta-P and betamethasone-acetate at 2, 5, and 7 days after initiation of ACS.
Results: Oral Dex-P had lower bioavailability than Beta-P, giving a lower maximum maternal and fetal concentration. A single oral dose of 0.33 mg/kg of Beta-P was equivalent to the standard clinical treatment assessed at 2 days; 2 doses of 0.16 mg/kg of oral Beta-P were equivalent to the standard clinical treatment at 7 days as assessed by lung mechanics and gas exchange after preterm delivery and ventilation. In contrast, oral Dex-P was ineffective because of its decreased bioavailability.
Conclusion: Using a sheep model, we demonstrate the use of pharmacokinetics to develop oral dosing strategies for ACS. Oral dosing is feasible and may facilitate access to ACS in low-resource environments.