We have developed an integrated instrument combining deep ultraviolet laser ionization mass spectrometry (DUV-LIMS) and infrared multiphoton dissociation (IR-MPD) spectroscopy, abbreviated as DUV-IR. The 177.3 nm DUV laser (7 eV single-photon energy) has short pulse duration (15 ps) and appropriate pulse energy (∼20 µJ), which is found to be highly efficient for low-fragment photoionization of neutral metal clusters and molecules. A home-made cluster source is designed with an adjustable formation channel suitable for the generation of different cluster series. The well-aligned components of the reflection time-of-flight mass spectrometer, as well as the coaxial design of DUV laser and molecular beam, bring forth high sensitivity and high resolution of the DUV-LIMS. Taking these advantages, well-resolved neutral Vn (n = 1-43) and (Benzene)n (n = 1-25) clusters have been generated free of fragmentation. In addition to the generation and detection of neutral clusters, a fast-flow reaction tube is also designed downstream of the cluster source allowing to study their reactivity. In particular, a broad-range tunable IR laser (1.3-16 µm) is coupled with the DUV laser to attain IR-MPD spectroscopic analysis. This integrated system offers a general protocol to prepare various clusters to study their gas-phase reactivity and to determine their structures.