Purpose: While FGFR1 amplification has been described in breast cancer, the optimal treatment approach for FGFR1-amplified (FGFR1+) metastatic breast cancer (MBC) remains undefined.Experimental Design: We evaluated clinical response to endocrine and targeted therapies in a cohort of patients with hormone receptor-positive (HR+)/HER2- MBC and validated the functional role of FGFR1-amplification in mediating response/resistance to hormone therapy in vitro.
Results: In the clinical cohort (N = 110), we identified that patients with FGFR1+ tumors were more likely to have progesterone receptor (PR)-negative disease (47% vs. 20%; P = 0.005), coexisting TP53 mutations (41% vs. 21%; P = 0.05), and exhibited shorter time to progression with endocrine therapy alone and in combination with CDK4/6 inhibitor, but not with a mTOR inhibitor (everolimus), adjusting for key prognostic variables in multivariate analysis. Furthermore, mTOR-based therapy resulted in a sustained radiological and molecular response in an index case of FGFR1+ HR+/HER2- MBC. In preclinical models, estrogen receptor-positive (ER+)/FGFR1-amplified CAMA1 human breast cancer cells were only partially sensitive to fulvestrant, palbociclib, and alpelisib, but highly sensitive to everolimus. In addition, transduction of an FGFR1 expression vector into ER+ T47D cells induced resistance to fulvestrant that could be overcome by added TORC1 inhibition, but not PI3K or CDK4/6 inhibition.
Conclusions: Collectively, these findings suggest that while FGFR1 amplification confers broad resistance to ER, PI3K, and CDK4/6 inhibitors, mTOR inhibitors might have a unique therapeutic role in the treatment of patients with ER+/FGFR1+ MBC.
©2019 American Association for Cancer Research.