Screening the Best Compatibility of Selaginella moellendorffii Prescription on Hyperuricemia and Gouty Arthritis and Its Mechanism

Evid Based Complement Alternat Med. 2019 Jul 11:2019:7263034. doi: 10.1155/2019/7263034. eCollection 2019.

Abstract

Objectives: The Selaginella moellendorffii prescription (SMP) consists of S. moellendorffii Herba (SM), Smilacis glabrae Rhizoma (SGR), and Plantaginis Semen (PS). It has been commonly used to treat hyperuricemia and acute gouty arthritis as a hospital preparation. This study was aimed at investigating the best compatibility ratio of SMP on hyperuricemia and gouty arthritis and getting better insight of the possible mechanism. Methods. In vitro, anti-inflammatory activity of SMP was evaluated by lipopolysaccharide (LPS) induced RAW264.7 cells. The release of nitric oxide (NO) was screened by Griess assay, and NF-κB p65 and NLRP3 proteins expression was examined by immunofluorescence assay. Then, the levels of creatinine (Cr), blood urea nitrogen (BUN), and uric acid (UA) were detected in mice induced by potassium oxonate, and the paw oedema, inflammatory mediators, and histological examination were analyzed in rats induced by monosodium urate (MSU). HPLC method was employed to investigate the chemical profile of this preparation. Results. In vitro, SMP-3 (the ratio of SMP:SGR:PS was 3:1:1) exhibited the most potent anti-NO production activity without obvious toxicity. This anti-inflammatory effect was associated with suppression of NF-κB p65 nuclear translocation and NLRP3 protein expression. In animal experiments, the levels of BUN and Cr in SMP-3 group were lower than other extract groups, and the level of UA was also remarkably decreased by SMP-3 in hyperuricemic mice (P<0.01). Besides, SMP-3 extract was able to prevent the paw edema, reduce gouty joint inflammatory features, and decrease the levels IL-1β, PGE-2, IL-8, and NO in gouty arthritis rats. Furthermore, 6-C-β-D-xylopyranosyl-8-C-β-D-glucopyranosyl, apigenin, and astilbin were identified from SMP-3 extract.

Conclusions: In summary, SMP-3 may be a potential therapeutic agent for the prevention of hyperuricemic and gout.