Impact of the Major Candida glabrata Triazole Resistance Determinants on the Activity of the Novel Investigational Tetrazoles VT-1598 and VT-1161

Antimicrob Agents Chemother. 2019 Sep 23;63(10):e01304-19. doi: 10.1128/AAC.01304-19. Print 2019 Oct.

Abstract

VT-1161 and VT-1598 are promising investigational tetrazole antifungals that have shown in vitro and in vivo activity against Candida and other fungi. Candida glabrata is a problematic opportunistic pathogen that is associated with high mortality in invasive infection, as well as both intrinsic and rapidly acquired antifungal resistance. The MICs of VT-1161 and VT-1598 were determined by CLSI methodology to evaluate their in vitro activities against clinical C. glabrata isolates and strains containing individual deletions of the zinc cluster transcription factor genes PDR1 and UPC2A as well as the efflux transporter genes CDR1, PDH1, and SNQ2 Overall, both tetrazoles demonstrated relative activities comparable to those of the tested triazole antifungals against clinical C. glabrata isolates (MIC range, 0.25 to 2 mg/liter and 0.5 to 2 μg/ml for VT-1161 and VT-1598, respectively). Deletion of the PDR1 gene in fluconazole-resistant matched clinical isolate SM3 abolished the decreased susceptibility phenotype completely for both VT-1161 and VT-1598, similarly to the triazoles. UPC2A deletion also increased susceptibility to both triazoles and tetrazoles but to a lesser extent than PDR1 deletion. Of the three major transporter genes regulated by Pdr1, CDR1 deletion resulted in the largest MIC reductions for all agents tested, while PDH1 and SNQ2 deletion individually impacted MICs very little. Overall, both VT-1161 and VT-1598 have comparable activities to those of the available triazoles, and decreased susceptibility to these tetrazoles in C. glabrata is driven by many of the same known resistance mechanisms.

Keywords: Candida glabrata; antifungal resistance; azole antifungals; tetrazole.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Antifungal Agents / pharmacology*
  • Candida glabrata / drug effects*
  • Candida glabrata / genetics
  • Candida glabrata / metabolism
  • Drug Resistance, Fungal / genetics
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Microbial Sensitivity Tests
  • Pyridines / pharmacology*
  • Tetrazoles / pharmacology*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Antifungal Agents
  • Fungal Proteins
  • Pyridines
  • Tetrazoles
  • Transcription Factors
  • VT-1161
  • VT-1598