In our previous study, biochar (BC) supported sulfidated nano zerovalent iron (S-nZVI@BC) was prepared for nitrobenzene (NB) reduction. In this study, in order to further improve the reduction performance of S-nZVI@BC, BC was modified before the loading of S-nZVI through three methods: oxidant (H2O2) pretreatment, alkali (NaOH) pretreatment and acid (HCl) pretreatment. The results indicated that S-nZVI could be evenly distributed onto HCl-BC due to increased surface area, negative surface charge and increased acidic functional groups on HCl-BC. At an initial concentration of 200 mg L-1, NB could be completely removed by S-nZVI@HCl-BC within a reaction time as short as 60 min, indicating rather excellent performance of S-nZVI@HCl-BC. NB reduction performance followed the order: S-nZVI@HCl-BC > S-nZVI@NaOH-BC > S-nZVI@BC > S-nZVI@H2O2-BC. The mass ratio of S-nZVI and HCl-BC was optimized in terms of NB removal efficiency, with 3:1 being identified as the best mass ratio. Furthermore, the mechanism involved in the enhanced NB reduction by S-nZVI@HCl-BC was proposed. This study demonstrated that S-nZVI@HCl-BC is a promising alternative for efficient NB removal from wastewater.
Keywords: Biochar; Modification; Nitrobenzene; Reduction; Sulfidated nano zerovalent iron (S-nZVI).
Copyright © 2019 Elsevier B.V. All rights reserved.