Background: We aimed to investigate whether pre-therapeutic radiomic features based on magnetic resonance imaging (MRI) can predict the clinical response to neoadjuvant chemotherapy (NACT) in patients with locally advanced cervical cancer (LACC).
Methods: A total of 275 patients with LACC receiving NACT were enrolled in this study from eight hospitals, and allocated to training and testing sets (2:1 ratio). Three radiomic feature sets were extracted from the intratumoural region of T1-weighted images, intratumoural region of T2-weighted images, and peritumoural region of T2-weighted images before NACT for each patient. With a feature selection strategy, three single sequence radiomic models were constructed, and three additional combined models were constructed by combining the features of different regions or sequences. The performance of all models was assessed using receiver operating characteristic curve.
Findings: The combined model of the intratumoural zone of T1-weighted images, intratumoural zone of T2-weighted images,and peritumoural zone of T2-weighted images achieved an AUC of 0.998 in training set and 0.999 in testing set, which was significantly better (p < .05) than the other radiomic models. Moreover, no significant variation in performance was found if different training sets were used.
Interpretation: This study demonstrated that MRI-based radiomic features hold potential in the pretreatment prediction of response to NACT in LACC, which could be used to identify rightful patients for receiving NACT avoiding unnecessary treatment.
Keywords: Locally advanced cervical cancer; Magnetic resonance imaging; Neoadjuvant chemotherapy; Radiomics.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.