Purpose: Evaluation of [68Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity.
Procedures: Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [68Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters.
Results: In vitro experiments confirmed specific binding of [68Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [68Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology.
Conclusion: [68Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.
Keywords: Apoptosis; Chemotherapy; Duramycin; PET/CT; Toxicity.