A novel and porous molecularly imprinted polymer (PMIP) was synthesized and used as a solid-phase extraction adsorbent for preconcentration of carbamazepine (CBZ) prior to its quantitation by high-performance liquid chromatography (HPLC) in various sample forms (e.g., drinking water, river water, hospital wastewater, and pharmaceuticals). PMIP-CBZ was applied to a polymerization process in which polystyrene spheres were coated with a silica layer. Removal of polystyrene spheres and formation of porous silica facilitated the recovery of CBZ (99.4%) during the extraction process. Site accessibility to the surface of PMIP-CBZ increased the density of high-recognition sites. PMIP-CBZ was characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. The key variables influencing the extraction efficiency of PMIP (e.g., adsorbent loading, eluent type, eluent volume, reusability of the adsorbent, and cross-reactivity) were optimized. The optimized protocol was successfully employed to quantify CBZ with limit of detection and limit of quantification as 0.082 and 0.270 ng/mL, respectively (linear detection range: 0.5-250 ng/mL and a relative standard deviation: < 5%). Use of the PMIP adsorbent resulted in a sensitive and stable method for efficiently quantitation of CBZ from various real sample matrices.
Keywords: Aqueous samples; Carbamazepine; Porous molecularly imprinted polymer; Solid-phase extraction.
Copyright © 2019 Elsevier Inc. All rights reserved.