Reliable detection and measurement of cell proliferation are essential in the preclinical assessment of carcinogenic risk of therapeutics. In this context, the assessment of mitogenic potential on mammary glands is crucial in the preclinical safety evaluation of novel insulins. The existing manual counting is time-consuming and subject to operator bias. To standardize the processes, make it faster, and resistant to errors, we developed a semiautomated image analysis system (CEPA software, which is open-source) for counting of proliferating cells in photomicrographs of mammary gland sections of rats labeled with Ki-67. We validated the software and met the predefined targets for specificity, accuracy, and reproducibility. In comparison to manual counting, the respective mean differences in absolute labeling indices (LIs) for CEPA software were 3.12% for user 1 and 3.05% for user 2. The respective regression analysis revealed a good correlation between the CEPA software user and manual counting. Moreover, the CEPA software showed enhanced reproducibility between independent users. The interuser variability is centered around 0 and the absolute difference was about 0.53% LI. Based on validation data, our software has superiority to the manual counting and is a valid and reliable tool for the routine analysis of cell proliferation in mammary glands from rats exposed to insulin analogs.
Keywords: Ki67; cell proliferation; image analysis; insulin analogs; mammary glands; rats; validation.