Measles virus is highly infectious and remains a leading cause of vaccine preventable deaths in children. Neutralizing antibody responses elicited by measles virus infection or immunization are a serological correlate of protection. We describe a high-throughput neutralization assay to improve surveillance for measles immunity. Measles virus-antibody mixtures were incubated on Vero cell monolayers and 24 hours later cell-lysates harvested and subjected to one-step SYBR green RT-qPCR to amplify a target sequence within the measles virus nucleoprotein gene. Neutralization endpoint titers were interpolated to determine the dilution that inhibited the relative amplicon copy number by at least 90% compared to the mean signal obtained in virus control wells in the absence of serum. Anti-measles virus and anti-measles hemagglutinin antisera specifically neutralized measles virus in the microneutralization RT-qPCR assay while pre-immune sera and sera raised against other viruses did not. The microneutralization RT-qPCR assay obeyed the Percentage Law for measles virus inputs ranging from 100-5000 TCID50/well. The linear range of the assay corresponds to measles antibody concentrations of 30 to 3000 mIU/mL. Bland-Altman analysis and two-way analysis of variance demonstrated that results obtained using the microneutralization RT-qPCR assay were comparable to those obtained using a plaque reduction neutralization test and correctly identified human serum samples that were seropositive (95% and 100%, sensitivity and specificity, respectively). Furthermore, these comparisons suggest that a concentration of 300 mIU/mL may be a conservative cut-point to use to identify individuals likely to be protected against severe measles disease when the endpoint is based on 90% inhibition of virus replication. Measles virus microneutralization RT-qPCR is a rapid, sensitive, specific, and robust assay for detecting measles neutralizing antibodies that may help to improve immunization strategies nationally and achieve measles elimination globally.