Background: Myxoid tumors pose diagnostic challenges for radiologists and pathologists. All myxoid tumors can be differentiated from each other using fluorescent in-situ hybridization (FISH) or immunohistochemical markers, except for myxomas and myxofibrosarcomas. Myxomas and myxofibrosarcomas are rare tumors. Myxomas are benign and histologically bland, whereas myxofibrosarcomas are malignant and histologically heterogenous. Because of the histological heterogeneity, low grade myxofibrosarcomas may be mistaken for myxomas on core needle biopsies. We evaluated the performance of T1-weighted signal intensity (T1SI), tumor volume, and radiomic features extracted from magnetic resonance imaging (MRI) to differentiate myxomas from myxofibrosarcomas.
Methods: The MRIs of 56 patients (29 with myxomas, 27 with myxofibrosarcomas) were analyzed. We extracted 89 radiomic features. Random forests based classifiers using the T1SI, volume features, and radiomic features were used to differentiate myxomas from myxofibrosarcomas. The classifiers were validated using a leave-one-out cross-validation. The performances of the classifiers were then compared.
Results: Myxomas had lower normalized T1SI than myxofibrosaromas (p = 0.006) and the AUC using the T1SI was 0.713. However, the classification model using radiomic features had an AUC of 0.885 (accuracy = 0.839, sensitivity = 0.852, specificity = 0.828), and outperformed the classification models using T1SI (AUC = 0.713) and tumor volume (AUC = 0.838). The classification model using radiomic features was significantly better than the classifier using T1SI values (p = 0.039).
Conclusions: Myxofibrosarcomas are on average higher in T1-weighted signal intensity than myxomas. Myxofibrosarcomas are larger and have shape differences compared to myxomas. Radiomic features performed best for differentiating myxomas from myxofibrosarcomas compared to T1-weighted signal intensity and tumor volume features.
Keywords: Magnetic resonance imaging; Myxofibrosarcomas; Myxomas; Radiomics; Random forest.