Objectives: This study was designed to investigate whether immunomodulation and Microglia polarization is involved in the anti-inflammatory and neuroprotective effect induced by hypoxic preconditioning (HPC) in the middle cerebral artery occlusion (MCAO) brain injury model.
Methods: Longa method, (neurological disability status scale) NDSS method and TTC staining were used to evaluate the degree of cerebral infarction injury under different treatments (Sham, HPC, MCAO and co-treatment with HPC and MCAO). Western blot was used to detect expression profiles of apoptosis and related factors of neurological function. Flow cytometry was performed to analyze changes in the ratio of helper T cells, toxic T cells and NK cells in peripheral immune cells. And immunohistochemistry was used to examine the changes in microglial morphology. ELISA was used to evaluate the levels of nerve growth factors and neurogenesis conditions. Finally, RT-PCR was determined to analyze the transformation of microglia phenotype after HPC and MCAO treatment.
Results: MCAO dramatically induced local formation of cerebral infarction. HPC relieved MCAO-induced cerebral infarction and increased rat cognition. HPC affected activation of microglia without significantly affecting in peripheral immune cell populations. After HPC co-treatment with MCAO, the M1 phenotype of microglia was changed and there was a transformation to M2.
Conclusion: The treatment of HPC remarkably affected the polarization of microglia cells in MCAO rats, and reduced the cerebral nerve injury and played a protective role in MCAO model.
Keywords: Hypoxic preconditioning; Inflammation injury; MCAO; Microglia polarization.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.