Cone snails are venomous marine gastropods that hydraulically propel a hollow, chitinous radular harpoon into prey [1,2]. This radular harpoon serves both as projectile and conduit for venom delivery. In the fish-hunting cone snail Conus catus, the radular harpoon is also utilized to tether the snail to its prey, rapidly paralyzed by neuroexcitatory peptides [2,3]. Effective prey capture in C. catus requires both fast-acting neurotoxins and a delivery system quick enough to exceed the prey fish's rapid escape responses [4]. We report here that the cone snail's prey strike is one of the fastest in the animal kingdom. A unique cellular latch mechanism prevents harpoon release until sufficient pressure builds and overcomes the forces of the latch, resulting in rapid acceleration into prey [2]. The radular harpoon then rapidly decelerates as its bulbous base reaches the end of the proboscis, a distensible hydrostatic skeleton extended toward the prey [2], with little slowing during prey impalement. The velocities achieved are the fastest movements of any mollusk and exceed previous estimates by over an order of magnitude [1].
Copyright © 2019 Elsevier Ltd. All rights reserved.