Metabolites from Bufo gargarizans (Cantor, 1842): A review of traditional uses, pharmacological activity, toxicity and quality control

J Ethnopharmacol. 2020 Jan 10:246:112178. doi: 10.1016/j.jep.2019.112178. Epub 2019 Aug 21.

Abstract

Ethnopharmacological relevance: Bufo gargarizans (Cantor, 1842) (BGC), a traditional medicinal animal distributed in many provinces of China, is well known for the pharmaceutical value of Chansu and Chanpi. As traditional Chinese medicines (TCMs), Chansu and Chanpi, with their broad-spectrum of therapeutic applications, have long been applied to detoxification, anti-inflammation, analgesia, etc. OVERARCHING OBJECTIVE: We critically analyzed the current evidence for the traditional uses, chemical profiles, pharmacological activity, toxicity and quality control of BGC (Bufonidae family) to provide a scientific basis for future in-depth studies and perspectives for the discovery of potential drug candidates.

Methodology: All of the available information on active constituents and TCMs derived from BGC was obtained using the keywords "Bufo gargarizans", "Chansu", "Chanpi", "Huachansu", or "Cinobufacini" through different electronic databases, including PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), the Wanfang Database, and Pharmacopoeia of China. In addition, Chinese medicine books from different times were used to elucidate the traditional uses of BGC. Electronic databases, including the "IUCN Red List of Threatened Species", "American Museum of Natural History" and "AmphibiaWeb Species Lists", were used to validate the scientific name of BGC.

Results: To date, about 118 bufadienolide monomers and 11 indole alkaloids have been identified from BGC in total. The extracts and isolated compounds exhibit a wide range of in vitro and in vivo pharmacological effects. The literature search demonstrated that the ethnomedicinal uses of BGC, such as detoxification, anti-inflammation and the ability to reduce swelling and pain associated with infections, are correlated with its modern pharmacological activities, including antitumor, immunomodulation and attenuation of cancer-derived pain. Bufadienolides and indole alkaloids have been regarded as the main active substances in BGC, among which bufadienolides have significant antitumor activity. Furthermore, the cardiotoxicity of bufadienolides was discussed, and the main molecular mechanism involves in the inhibition of Na+/K+-ATPase. Besides, with the development of modern analytical techniques, the quality control methods of BGC-derived TCMs are being improved constantly.

Conclusions: An increasing number of reports suggest that BGC can be regarded as an excellent source for exploring the potential antitumor constituents. However, the future antitumor research of BGC needs to follow the standard pharmacology guidelines, so as to provide comprehensive pharmacological information and aid the reproducibility of the data. Besides, to ensure the efficacy and safety of BGC-derived TCMs, it is vital to construct a comprehensive quality evaluation model on the basis of clarifying pharmacodynamic-related and toxicity-related compositions.

Keywords: Antitumor activity; Bufadienolide; Bufo gargarizans; Bufonidae; Cardiotoxicity; Quality control; Traditional uses.

Publication types

  • Review

MeSH terms

  • Animals
  • Bufanolides / pharmacology
  • Bufanolides / therapeutic use
  • Bufanolides / toxicity
  • Bufonidae / metabolism*
  • Humans
  • Medicine, Chinese Traditional*
  • Quality Control

Substances

  • Bufanolides