Background: Persistent viruses such as murine cytomegalovirus (MCMV) and adenovirus-based vaccines induce strong, sustained CD8 + T-cell responses, described as memory "inflation". These retain functionality, home to peripheral organs and are associated with a distinct transcriptional program. Methods: To further define the nature of the transcriptional mechanisms underpinning memory inflation at different sites we used single-cell RNA sequencing of tetramer-sorted cells from MCMV-infected mice, analyzing transcriptional networks in virus-specific populations in the spleen and gut intra-epithelial lymphocytes (IEL). Results: We provide a transcriptional map of T-cell memory and define a module of gene expression, which distinguishes memory inflation in spleen from resident memory T-cells (T RM) in the gut. Conclusions: These data indicate that CD8 + T-cell memory in the gut epithelium induced by persistent viruses and vaccines has a distinct quality from both conventional memory and "inflationary" memory which may be relevant to protection against mucosal infections.
Keywords: adenovirus vector; cytomegalovirus; memory T cells; memory inflation; resident-memory T cells.