Neisseria meningitidis colonizes the human oropharynx and transmits mainly via asymptomatic carriage. Actual outbreaks of meningococcal meningitis are comparatively rare and occur when susceptible populations are exposed to hypervirulent clones, genetically distinct from the main carriage isolates. However, carriage isolates can evolve into pathogens through a limited number of recombination events. The present study examines the potential for the sequence type (ST)-192, by far the dominant clone recovered in recent meningococcal carriage studies in sub-Saharan Africa, to evolve into a pathogen. We used whole-genome sequencing on a collection of 478 meningococcal isolates sampled from 1- to 29- year-old healthy individuals in Arba Minch, southern Ethiopia in 2014. The ST-192 clone was identified in nearly 60 % of the carriers. Using complementary short- and long-read techniques for whole-genome sequencing, we were able to completely resolve genomes and thereby identify genomic differences between the ST-192 carriage strain and known pathogenic clones with the highest possible resolution. We conclude that it is possible, but unlikely, that ST-192 could evolve into a significant pathogen, thus, becoming the major invasive meningococcus clone in the meningitis belt of Africa following upcoming mass vaccination with a polyvalent conjugate vaccine that targets the A, C, W, Y and X capsules.
Keywords: ST-192 meningococci; capsule null; carriage; invasiveness; nanopore sequencing; pathogen evolution; whole-genome sequencing.