Neurobiological roots of psychopathy

Mol Psychiatry. 2020 Dec;25(12):3432-3441. doi: 10.1038/s41380-019-0488-z. Epub 2019 Aug 27.

Abstract

Psychopathy is an extreme form of antisocial behavior, with about 1% prevalence in the general population, and 10-30% among incarcerated criminal offenders. Although the heritability of severe antisocial behavior is up to 50%, the genetic background is unclear. The underlying molecular mechanisms have remained unknown but several previous studies suggest that abnormal glucose metabolism and opioidergic neurotransmission contribute to violent offending and psychopathy. Here we show using iPSC-derived cortical neurons and astrocytes from six incarcerated extremely antisocial and violent offenders, three nonpsychopathic individuals with substance abuse, and six healthy controls that there are robust alterations in the expression of several genes and immune response-related molecular pathways which were specific for psychopathy. In neurons, psychopathy was associated with marked upregulation of RPL10P9 and ZNF132, and downregulation of CDH5 and OPRD1. In astrocytes, RPL10P9 and MT-RNR2 were upregulated. Expression of aforementioned genes explained 30-92% of the variance of psychopathic symptoms. The gene expression findings were confirmed with qPCR. These genes may be relevant to the lack of empathy and emotional callousness seen in psychopathy, since several studies have linked these genes to autism and social interaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aggression
  • Antisocial Personality Disorder* / genetics
  • Criminals*
  • Emotions
  • Empathy
  • Humans