Enhanced Photosensitive Schottky Diode Behavior of Pyrazine over 2-Aminopyrimidine Ligand in Copper(II)-Phthalate MOFs: Experimental and Theoretical Rationalization

ACS Omega. 2018 Aug 15;3(8):9160-9171. doi: 10.1021/acsomega.8b01111. eCollection 2018 Aug 31.

Abstract

Two novel Cu(II)-based metal-organic frameworks [C40H34Cu2N6O18 (1) and C20H18CuN2O10 (2)] have been synthesized using 2-aminopyrimidine or pyrazine ligands and phthalate ion and characterized spectroscopically and by X-ray single-crystal diffraction. Both 1 and 2 show electrical conductivity and photosensitivity, evidencing their potentiality in optoelectronic device applications. Experimental and theoretical investigations revealed that the electrical conductivity under irradiation of visible light increases compared to that under dark condition (photosensitive Schottky barrier diode behavior), especially in complex 2. Both 1 and 2 have been successfully applied in technologically challenging thin-film active devices.