Structural Diversity in Supramolecular Organization of Anionic Phosphate Monoesters: Role of Cations

ACS Omega. 2019 Jan 29;4(1):2118-2133. doi: 10.1021/acsomega.8b03192. eCollection 2019 Jan 31.

Abstract

Syntheses and structures of anionic arylphosphate monoesters [ArOP(O)2(OH)]- (Ar = 2,6-CHPh2-4-R-C6H2; R = Me/Et/iPr/tBu) with different counter cations are reported. The counter cations were varied systematically: imidazolium cation, 2-methyl imidazolium cation, N-methyl imidazolium cation, N,N'-alkyl substituted imidazolium cation, 1,4-diazabicyclo[2.2.2]octan-1-ium cation, 4,4'-bipyridinium dication, and magnesium(II) dication. The objective was to examine if the supramolecular structure of anionic arylphosphate monoesters could be modulated by varying the cation. It was found that an eight-membered P2O4H2-hydrogen-bonded dimeric motif involving intermolecular H-bonding between the [P(O)(OH)] unit of the anionic phosphate monoester along with the counter cation is formed with 2-methyl imidazolium cation, N-methyl imidazolium cation, N,N'-alkyl substituted imidazolium cation, 1,4-diazabicyclo[2.2.2]octan-1-ium cation, and magnesium(II) dication; both discrete and polymeric H-bonded structures are observed. In the case of imidazolium cations and 1,4-diazabicyclo[2.2.2]octan-1-ium cation, the formation of one-dimensional polymers (single lane/double lane) was observed. On the other hand, two types of phosphate motifs, intermolecular H-bonded dimer and an open-form, were observed in the case of 4,4'-bipyridinium dication.