A global network of long-term carbon and water flux measurements has existed since the late 1990s. With its representative sampling of the terrestrial biosphere's climate and ecological spaces, this network is providing background information and direct measurements on how ecosystem metabolism responds to environmental and biological forcings and how they may be changing in a warmer world with more carbon dioxide. In this review, I explore how carbon and water fluxes of the world's ecosystem are responding to a suite of covarying environmental factors, like sunlight, temperature, soil moisture, and carbon dioxide. I also report on how coupled carbon and water fluxes are modulated by biological and ecological factors such as phenology and a suite of structural and functional properties. And, I investigate whether long-term trends in carbon and water fluxes are emerging in various ecological and climate spaces and the degree to which they may be driven by physical and biological forcings. As a growing number of time series extend up to 20 years in duration, we are at the verge of capturing ecosystem scale trends in the breathing of a changing biosphere. Consequently, flux measurements need to continue to report on future conditions and responses and assess the efficacy of natural climate solutions.
Keywords: carbon dioxide; ecosystem; ecosystem respiration; eddy covariance; evaporation; photosynthesis; water vapor.
© 2019 John Wiley & Sons Ltd.