In this paper, for the first time, we show in chloraminated systems, the chloramine decaying proteins (CDP) play an important role in bulk water and biomass (biofilm) in resisting disinfectant. Extracellular polymeric substances in biofilm/biomass are known to protect microbes from disinfectants and toxic materials, but the exact mechanism(s) is/are not known. Starting with the seed from a nitrifying chloraminated reactor, two 5 L reactors were fed intermittently with either chloramine or ammonia containing nutrient solution. The degree of nitrification increased with time in both reactors despite an increase in soluble CDP in the chloraminated reactor, while soluble CDP decreased in the ammoniated one. The suspended biomass collected after eight months of operation from chloraminated reactor contained CDP and responded to short-term chloramine stress (1.5 h with initial 1.5 mg-Cl2·L-1) by the additional production of soluble CDP. The suspended biomass from ammoniated reactor neither contained CDP nor produced soluble CDP as a stress response. The production, release and accumulation of CDP in biomass (biofilm) could be one of several mechanisms microbes use to defend against disinfectants (stress). The new understanding will pave the way for better disinfection management and better design of experiments.
Keywords: Chloramine; Chloramine decaying proteins; Chlorine; Disinfectant; Disinfection resistance; EPS; Exopolysaccharide; Nitrification; Soluble microbial products; Stress response.
Copyright © 2019 Elsevier Ltd. All rights reserved.