Chemoresistance is the primary cause of chemotherapy failure. Compelling evidence shows that micro RNAs (miRNAs) contribute to reprogram cancer cells toward a resistant phenotype. We investigate the role of miRNAs in the response to acute treatment with 5-FU in colon cancer-resistant cells. We performed a global gene expression profile for the entire miRNA genome and found a change in the expression of four miRNAs following acute treatment with 5-FU. Among them, we focused on miR-210-3p, previously described as a key regulator of DNA damage repair mechanisms and mitochondrial metabolism. We show that miR-210-3p downregulation enables resistant cells to counteract the toxic effect of the drug increasing the expression of RAD-52 protein, responsible for DNA damage repair. Moreover, miR-210-3p downregulation enhances oxidative phosphorylation (OXPHOS), increasing the expression levels of succinate dehydrogenase subunits D, decreasing intracellular succinate levels and inhibiting HIF-1α expression. Altogether, these adaptations lead to increased cells survival following drug exposure. These evidence suggest that miR-210-3p downregulation following 5-FU sustains DNA damage repair and metabolic adaptation to counteract drug treatment.
Keywords: 5-fluorouracil; DNA damage; chemoresistance; miR-210-3p; oxidative phosphorylation.
© 2019 Wiley Periodicals, Inc.