Marchetti, PH, Magalhaes, RA, Gomes, WA, da Silva, JJ, Stecyk, SD, and Whiting, WC. Different knee and ankle positions affect force and muscle activation during prone leg curl in trained subjects. J Strength Cond Res 35(12): 3322-3326, 2021-Different joint positions for biarticular muscles may affect force and muscular activity during single-joint exercises. The aim of this study was to compare the maximal isometric contractions and muscle activation in 2 different knee and ankle positions during prone leg curl exercise in trained subjects. Fifteen resistance-trained men (27 ± 4 years, 178.80 ± 5.72 cm, 86.87 ± 12.51 kg) were recruited. The peak force (PF) and muscle activation of biceps femoris, gastrocnemius lateralis (GL), and soleus lateralis (SL) were measured during knee flexion at 0 and 90° and maximal dorsiflexion (D) or plantarflexion (P). Three maximal voluntary isometric contractions of 5 seconds were performed for each combination of knee and ankle positions. Two-way repeated-measures analysis of variances were used for all dependent variables. For PF, there was a significant difference between ankle positions (D × P) at 90° (p = 0.009) and knee positions (0 × 90°) for D (p < 0.001) and P (p < 0.001). Peak force was greater with the knee at 0° and the ankle maximally dorsiflexed. For GL, there was a significant difference between ankle (D × P) at 0° (p = 0.002) and knee positions (0 × 90°) for D (p = 0.005). Gastrocnemius lateralis activation was greater with the knee at 90° of flexion and the ankle maximally dorsiflexed. For SL, there was a significant difference between ankle positions (D × P): at 90° (p = 0.001) and at 0° (p = 0.002). Soleus lateralis is more active in plantarflexion irrespective of the knee joint position. Isometric contractions with full knee extension produce more strength regardless of the ankle position; neither the knee position nor the ankle position may influence the activity of the hamstrings.
Copyright © 2019 National Strength and Conditioning Association.