Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages

Biomaterials. 2019 Nov:222:119398. doi: 10.1016/j.biomaterials.2019.119398. Epub 2019 Aug 16.

Abstract

Hydrogen sulfide (H2S), as a gaseous messenger, exhibits potential therapeutic effects in biological and clinical applications. Herein, an in situ forming biomimetic hyaluronic acid (HA) hydrogel was used as a matrix to dope a pH-controllable H2S donor, JK1, to form a novel HA-JK1 hybrid system. This HA-JK1 hydrogel was designed as an ideal delivery scaffold for JK1 with pH-dependent prolonged H2S releasing profile. In vitro study suggested that JK1 could induce the polarization of M2 phenotype indicating a higher pro-healing efficiency of macrophages. The in vivo studies on dermal wounds showed that the HA-JK1 hybrid hydrogel significantly accelerated the wound regeneration process through enhanced re-epithelialization, collagen deposition, angiogenesis and cell proliferation. Furthermore, the in vivo results also demonstrated a higher level of M2 polarization in HA-JK1 treated group with reduced inflammation and improved wound remodeling effects, which was consistent with the in vitro results. These observations could be considered as a key to the efficient wound treatment. Therefore, we suggest that HA-JK1 can be used as a novel wound dressing material toward cutaneous wound model in vivo. This system should significantly enhance wound regeneration through the release of H2S that induces the expression of M2 macrophage phenotype.

Keywords: Controlled release; HA hydrogels; Hydrogen sulfide; M2 macrophage; Wound healing; pH responsive.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Flow Cytometry
  • Hydrogels / chemistry*
  • Hydrogen Sulfide / chemistry*
  • Macrophages / drug effects*
  • Macrophages / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • RAW 264.7 Cells
  • Reverse Transcriptase Polymerase Chain Reaction
  • Wound Healing / drug effects

Substances

  • Hydrogels
  • Hydrogen Sulfide