We investigate the effects of antimicrobial (sodium citrate tribasic, E331) and antioxidant (ascorbic acid, E300 and sodium ascorbate, E301) additives on the meat drip from defrosted yellowfin tuna fish loins obtained from the local market and horse heart myoglobin. The effects have been followed by electronic absorption, its second derivative spectra, and resonance Raman spectroscopies. Upon addition of the additives, a final form is reached after about 24 h. It is characterized by a 4 nm red-shifted Soret band compared to that typical of the oxy species (418 nm) but with similar Q bands. Resonance Raman experiments carried out in 16O2 and 18O2 allowed us to identify the presence of the native oxy form coexisting with a second oxygen bound species, characterized by a ν(FeO2) stretching frequency upshifted 7 cm-1 compared to the native oxy form and with a greater (33 cm-1) isotopic shift in 18O2. These data suggest the presence of a highly bent ligand conformation. The new species induced by the addition of the additives imparts a red colour to the tuna fish meat, a characteristic that is of some concern. In fact, the presence of the new red form can mask the aging of the product that, consequently, might contain histamine. Furthermore, the electronic absorption spectrum is very similar to that of the tuna fish myoglobin carbon monoxide complex, which has important regulatory consequences. Carbon monoxide treatment of tuna is banned in the EU for masking the effects of aging on the appearance of meats.
Keywords: Additives; Conformational changes; Horse heart myoglobin; Resonance Raman; Tuna myoglobin.
Copyright © 2019 Elsevier Inc. All rights reserved.