Rare earth elements (REE), including neodymium, praseodymium, and dysprosium are used in a range of low-carbon technologies, such as electric vehicles and wind turbines, and demand for these REE is forecast to grow. This study demonstrates that a process simulation-based life cycle assessment (LCA) carried out at the early stages of a REE project, such as at the pre-feasibility stage, can inform subsequent decision making during the development of the project and help reduce its environmental impacts. As new REE supply chains are established and new mines are opened. It is important that the environmental consequences of different production options are examined in a life cycle context in order that the environment footprint of these raw materials is kept as low as possible. Here, we present a cradle-to-gate and process simulation-based life cycle assessment (LCA) for a potential new supply of REE at Songwe Hill in Malawi. We examine different project options including energy selection and a comparison of on-site acid regeneration versus virgin acid consumption which were being considered for the project. The LCA results show that the global warming potential of producing 1 kg of rare earth oxide (REO) from Songwe Hill is between 17 and 87 kg CO2-eq. A scenario that combines on-site acid regeneration with off-peak hydroelectric and photovoltaic energy gives the lowest global warming potential and performs well in other impact categories. This approach can equally well be applied to all other types of ore deposits and should be considered as a routine addition to all pre-feasibility studies.
Keywords: Energy selection; Life cycle assessment (LCA); Mineral processing simulation; Process simulation; Rare earth elements.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.