Aging is associated with an increased risk of cardiovascular disease. Numerical and functional declines in endothelial progenitor cells (EPCs) limit their capacity for endothelial repair and promote the development of cardiovascular disease. We explored the effects of nuclear factor (erythroid-derived 2)-like 2 (NRF2) on EPC activity during aging. Both in vitro and in vivo, the biological functioning of EPCs decreased with aging. The expression of NRF2 and its target genes (Ho-1, Nqo-1 and Trx) also declined with aging, while Nod-like receptor protein 3 (NLRP3) expression increased. Aging was associated with oxidative stress, as evidenced by increased reactive oxygen species and malondialdehyde levels and reduced superoxide dismutase activity. Nrf2 silencing impaired the functioning of EPCs and induced oxidative stress in EPCs from young mice. On the other hand, NRF2 activation in EPCs from aged mice protected these cells against oxidative stress, ameliorated their biological dysfunction and downregulated the NLRP3 inflammasome. These findings suggest NRF2 can prevent the functional damage of EPCs and downregulate the NLRP3 inflammasome through NF-κB signaling.
Keywords: NLRP3 inflammasome; NRF2; aging; endothelial progenitor cells; oxidative stress.