Purpose: To compare two generations of Heidelberg SPECTRALIS optical coherence tomography (OCT) technologies (SPECTRALIS OCT1 and OCT2) with regard to time efficiency and image quality of retinal nerve fiber layer (RNFL) thickness and Bruch's membrane opening (BMO) analysis in individuals with glaucoma.
Materials and methods: In this single center, prospective cohort study, 35 consecutive glaucoma patients (70 eyes) were included. RNFL thickness and BMO-MRW analysis was performed in all patients using the Heidelberg SPECTRALIS OCT1 and the Heidelberg SPECTRALIS OCT2 module. Each patient was imaged three times both with the SPECTRALIS-OCT1 and the SPECTRALIS-OCT2 device. All scans were assessed for further analyzability. Acquisition duration, signal-to-noise ratio (SNR), and the displacement between the initially localized and the redetermined BMO center were extracted from the measurement protocols and statistically compared.
Results: Mean (cumulative) scan acquisition duration was significantly higher with OCT1 compared with OCT2 (54.80 ± 18.61 seconds vs 20.40 ± 6.61 seconds; p < 0.01). Patient-related comparison showed a lower scan duration with the OCT2 device in all 35 patients. Mean SNR of the OCT1 images was 29.9 dB and 32.3 dB for the OCT2 images. The difference of -2.4 (95% CI: -3.1 to 2) was highly significant (p < 0.001). Mean displacement of the OCT1 images was 42.9 μm and 40.2 μm for the OCT2 images (95% CI: -4.710; p = 0.479).
Conclusion: With SPECTRALIS OCT2, acquisition time of BMO and RNFL scans is less than half of the acquisition time of SPECTRALIS OCT1. Image quality of OCT2 module is at least equivalent to the image quality of OCT1.
How to cite this article: Bosche F, Andresen J, et al. Spectralis OCT1 versus OCT2: Time Efficiency and Image Quality of Retinal Nerve Fiber Layer Thickness and Bruch's Membrane Opening Analysis for Glaucoma Patients. J Curr Glaucoma Pract 2019;13(1):16-20.
Keywords: Bruch's membrane opening; Glaucoma; Optical coherence tomography; Retinal nerve fiber layer; Spectralis.