Fabrication and evaluation of novel quercetin-conjugated Fe3O4-β-cyclodextrin nanoparticles for potential use in epilepsy disorder

Int J Nanomedicine. 2019 Aug 13:14:6481-6495. doi: 10.2147/IJN.S218317. eCollection 2019.

Abstract

Background: Despite the numerous pharmacological activities of quercetin, its biomedical application has been hampered, because of poor water solubility and low oral bioavailability. In the present study, we fabricated a novel form of quercetin-conjugated Fe3O4-β-cyclodextrin (βCD) nanoparticles (NPs), and the effect of these prepared NPs was evaluated in a chronic model of epilepsy.

Methods: Quercetin-loaded NPs were prepared using an iron oxide core coated with βCD and pluronic F68 polymer. The chronic model of epilepsy was developed by intraperitoneal injection of pentylenetetrazole (PTZ) at dose of 36.5 mg/kg every second day. Quercetin or its nanoformulation at doses of 25 or 50 mg/kg were administered intraperitoneally 10 days before PTZ injections and their applications continued 1 hour before each PTZ injection. Immunostaining was performed to evaluate the neuronal density and astrocyte activation of hippocampi.

Results: Our data showed successful fabrication of quercetin onto Fe3O4-βCD NPs. In comparison to free quercetin, quercetin NPs markedly reduced seizure behavior, neuronal loss, and astrocyte activation in a PTZ-induced kindling model.

Conclusion: Overall, quercetin-Fe3O4-βCD NPs might be regarded as an ideal therapeutic approach in epilepsy disorder.

Keywords: Fe3O4 nanoparticles; anticonvulsant; astrocyte activation; neuroprotection; quercetin.

MeSH terms

  • Animals
  • Astrocytes / drug effects
  • Disease Models, Animal
  • Epilepsy / drug therapy*
  • Hippocampus / pathology
  • Kindling, Neurologic
  • Magnetite Nanoparticles / administration & dosage
  • Magnetite Nanoparticles / chemistry*
  • Magnetite Nanoparticles / ultrastructure
  • Male
  • Mice
  • Neurons / drug effects
  • Neurons / pathology
  • Pentylenetetrazole / administration & dosage
  • Quercetin / pharmacology
  • Quercetin / therapeutic use*
  • Spectroscopy, Fourier Transform Infrared
  • beta-Cyclodextrins / chemistry*

Substances

  • Magnetite Nanoparticles
  • beta-Cyclodextrins
  • Quercetin
  • Pentylenetetrazole