The complement system consists of more than 30 proteins that have long been known to participate to the immune defence against pathogens and to the removal of damaged cells. Their role, however, extends beyond immunity and clearance of altered "self" components in the periphery. In particular, complement proteins can be induced by all cell types in the brain. Recent discoveries highlight the role of complement in normal and pathological brain development. Specifically, the complement system mediates synaptic pruning, a developmental process whereby supernumerary synapses are eliminated in the immature brain. The complement system has been implicated in pathological synapse elimination in schizophrenia, West Nile virus infection, and lupus, all of which are associated with psychiatric manifestations. Complement also contributes to synapse loss in neurodegenerative conditions. This review provides a brief overview of the well-studied role of complement molecules in immunity. The contribution of complement to embryonic and adult neurogenesis, neuronal migration, and developmental synaptic elimination in the normal brain is reviewed. We discuss the role of complement in synapse loss in psychiatric and neurological diseases and evaluate the therapeutic potential of complement-targeting drugs for brain disorders.
Keywords: brain development; microglia; schizophrenia; synapse elimination; synaptic pruning.