Investigation of Cubic Fe4 M4 Frameworks for Application in Nonaqueous Energy Storage

Chemistry. 2019 Nov 13;25(63):14421-14429. doi: 10.1002/chem.201903360. Epub 2019 Oct 16.

Abstract

Multimetallic complexes have recently seen increased attention as next-generation charge carriers for nonaqueous redox flow batteries. Herein, we report the electrochemical performance of a molecular iron-molybdenum oxido complex, {[(Me3 TACN)Fe][μ-(MoO4 κ3 O,O',O")]}4 (Fe4 Mo4 O16 ). In symmetric battery charging schematics, Fe4 Mo4 O16 facilitates reversible two-electron storage with coulombic efficiencies >99 % over 100 cycles (5 days) with no molecular decomposition and minimal capacity fade. Energy efficiency throughout cycling remained high (∼82 %), as a result of the rapid electron-transfer kinetics observed for each of the complex's four redox events. We also report the synthesis of the analogous synthetic frameworks featuring tungstate vertices or bridging-sulfide moieties, revealing key observations relevant to structure-function relationships and design criteria for these types of heterometallic ensembles.

Keywords: clusters; energy storage; iron molybdate; nonaqueous; redox flow battery.