Monoclonal antibody-based therapeutics are an integral part of treatment of different human diseases, and the selection of suitable antibody candidates during the discovery phase is essential. Here, we describe a novel, cellular screening approach for the identification and characterization of therapeutic antibodies suitable for conversion into T cell bispecific antibodies using chimeric antigen receptor (CAR) transduced Jurkat-NFAT-luciferase reporter cells (CAR-J). For that purpose, we equipped a Jurkat-NFAT reporter cell line with a universal CAR, based on a monoclonal antibody recognizing the P329G mutation in the Fc-part of effector-silenced human IgG1-antibodies. In addition to scFv-based second generation CARs, Fab-based CARs employing the P329G-binder were generated. Using these anti-P329G-CAR-J cells together with the respective P329G-mutated IgG1-antibodies, we established a system, which facilitates the rapid testing of therapeutic antibody candidates in a flexible, high throughput setting during early stage discovery. We show that both, scFv- and Fab-based anti-P329G-CAR-J cells elicit a robust and dose-dependent luciferase signal if the respective antibody acts as an adaptor between tumor target and P329G-CAR-J cells. Importantly, we could demonstrate that functional characteristics of the antibody candidates, derived from the anti-P329G-CAR-J screening assay, are predictive for the functionality of these antibodies in the T cell bispecific antibody format.
Keywords: CAR-T; Fab; P329G; T cell bispecific antibody (TCB); bioassay; cell-based assays; effector silent Fc; modular chimeric antigen receptor (CAR); screening platform.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].