Genome Analysis of Multidrug-Resistant Escherichia coli Isolated from Poultry in Nigeria

Foodborne Pathog Dis. 2020 Jan;17(1):1-7. doi: 10.1089/fpd.2019.2659. Epub 2019 Sep 11.

Abstract

Escherichia coli is one of the most common commensal bacteria of the gastrointestinal tract of humans and warm-blooded animals. Contaminated poultry can lead to disease outbreaks in consumers causing massive economic losses in the poultry industry. Additionally, commensal E. coli can harbor antibiotic resistance genes that can be transferred to other bacteria, including pathogens, in a colonized human host. In a previous study on antimicrobial resistance of E. coli from food animals from Nigeria, multidrug-resistant E. coli were detected. Three of those isolates were selected for further study using whole-genome sequencing due to the extensive drug resistance exhibited. All of the isolates carried the extended-spectrum β-lactamase (ESBL) genes, blaCTX-M15 and blaTEM-1, whereas one isolate harbored an additional ESBL, blaOXA-1. All of the tetracycline-resistant isolates carried tet(A). The genes aac3-IIa and aacA4, conferring resistance to aminoglycosides, were identified in an E. coli isolate resistant to gentamicin and tobramycin. In two E. coli isolates, dfrA14, qnrS1, and sulII, were detected conferring resistance to trimethoprim, fluoroquinolones, and sulfonamides, respectively. The third isolate carried dfrA17, no fluoroquinolone resistance gene, an additional sulI gene, and a chloramphenicol resistance gene, catB3. Mutations in candidate genes conferring resistance to fosfomycin and fluoroquinolones were also detected. Several efflux systems were detected in all the E. coli isolates and virulence-associated genes related to serum resistance, motility, and adhesion. E. coli and non-E. coli origin prophages were also identified in the isolates. The results underline the higher resolution power of whole-genome sequencing for investigation of antimicrobial resistance, virulence, and phage in E. coli.

Keywords: E. coli; Nigeria; food animals; multidrug resistance; phages; virulence.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chickens*
  • Drug Resistance, Multiple, Bacterial / genetics*
  • Escherichia coli / genetics*
  • Escherichia coli / isolation & purification
  • Escherichia coli Infections / epidemiology
  • Escherichia coli Infections / microbiology
  • Escherichia coli Infections / veterinary*
  • Genome, Bacterial
  • Nigeria / epidemiology
  • Poultry Diseases / epidemiology
  • Poultry Diseases / microbiology*
  • Whole Genome Sequencing / veterinary